

INT 技术白皮书

文档版本 V1.0

发布日期 2022-12-16

版权所有© 2022 浪潮电子信息产业股份有限公司。保留一切权利。

未经本公司事先书面许可,任何单位和个人不得以任何形式复制、传播本手册的部分 或全部内容。

商标说明

Inspur 浪潮、Inspur、浪潮、Inspur NOS 是浪潮集团有限公司的注册商标。 本手册中提及的其他所有商标或注册商标,由各自的所有人拥有。

技术支持

技术服务电话: 400-860-0011

- 地 址:中国济南市浪潮路 1036 号 浪潮电子信息产业股份有限公司
- 邮 箱:<u>lckf@inspur.com</u>
- 邮 编: 250101

变更记录

版本	时间	变更内容
V1.0	2022-12-16	首版发布

1	概述	
	1.1	背景1
	1.2	定义1
	1.3	优点2
2	缩写	和术语3
3	技术	介绍4
	3.1	应用场景4
	3.2	芯片支持 INT4
	3.3	软件支持 INT4
	3.4	角色5
		3.4.1 Initiator5
		3.4.2 Transit5
		3.4.3 Terminator5
	3.5	Metadata5
	3.6	Postcard 模式7
4	主要	特性8
5	典型	应用指南9
	5.1	典型组网方案9
	5.2	具体配置
6	维护	

1 概述

1.1 背景

在传统的企业网或数据中心内,随着网络规模的不断扩大,对网络监控的需求也在不断增加, 特别是在对于网络可靠性要求越来越高的情况下。如何在网络发生状况时快速发现问题以 及预测网络即将出现的故障点,是一个业界亟欲解决的问题。

当前业界常用的网络遥测方式有以下几种:

1. 传统网络测量

1.1. 主动测量

主动测量通过向网络中主动传送探测分组,并根据探测分组受网络影响而发生的特性变化 来分析网络行为。被测量的网络效能指针通常是丢包率、延迟、抖动、TTL 和带宽等。常见 的主动测量协议包括 PING、Traceroute、IP 测量协议(IP Measurement Protocol, IPMP)、 单向主动测量协议(One-Way Active Measurement Protocol, OWAMP)、双向主动测量协 议(Two-Way Active Measurement Protocol, TWAMP)、MPLS 丢包/延迟测量协议(MPLS L/DM Protocol)。

1.2. 被动测量

被动测量通过捕获流经测量点的分组来测量网络状态、流量特征和效能自变量。被动测量使 用控制平面讯息即可监测网络流量状态效能,被监测的效能指针通常是包/字节统计值、协 议型别、队列长度和延迟统计信息。常见的被动测量协议有网络数据流统计协议(Cisco Netflow)、sFlow、IP 流量信息输出协议(IPFIX)、数据报取样协议(PSAMP)。

2. 带内网络遥测(INT)

带内测量是近几年兴起的一种混合测量方法,它通过路径中间交换节点对数据报依次插入 元数据(Metadata)的方式完成网络状态采集。相较于传统网络测量方案,带内测量能够对网 络拓扑、网络效能和网络流量实现更细粒度的测量。

1.2 定义

INT(Inband network telemetry),是一种将特定的 metadata 插入网络流,然后将该流的 网络运行情况返回控制器分析的方法,主要用于确定端到端数据流的网络状态,以及查找网 络延迟大的节点,如下图所示,Server1 将封包送到 SW1,SW1 将网络信息附加到该封包 后送到 SW2, SW2 重复同样工作并传给 SW3, SW3 作为最终的配置节点会在此时将该封 包传送给控制器。

图 1-1 方案拓扑

1.3 优点

INT 作为一种网络探测的技术,具有如下优点:

- 记录的是带内的网络等待时间,相较于带外查询的数据更精准
- 减少封包探测次数,一次探测就能回收整条流的网络信息

图 2-1 INT

如上图所示:

缩写和术语	解释
INT	Inband Network Telemetry,带内网络遥测
Controller	控制交换机配置的控制器,也负责采集及分析回传数据
Initiator	路径上第一台交换机,传统上负责建立INT header及插入网络状态
	到封包中,在DSCP based INT框架中,只插入网络状态到封包中
Transit	路经中间的n台交换机,负责插入网络状态到封包中
Terminator	路径上最后一台交换机,负责回传遥测数据给controller
MD	Metadata,交换机附加到封包中的网络状态
DSCP	Differentiated Services Code Point,在ip header中用来做为封包
	分类的用途

本章主要介绍 INT 的芯片支持和软件支持的技术特点,包括应用场景、三种角色介绍及新 增的 metadata 字段内容。

3.1 应用场景

图 3-1 应用场景

通常情况下,当数据中心需要测量端到端之间的网络状态时,会使用 INT,此时会在封包通 过的交换机上进行配置,这些交换机被分为三种角色,initiator、transitor 和 terminator, 当数据封包到达一个交换机时,识别 INT 报文表头,交换机会在封包后插入 MD,以此类 推,直到整个遥测系统的最后一跳,再通过 gRPC 或是 ERSPAN 的方式回传给控制器。

3.2 芯片支持 INT

交换芯片需支持 INT 表头,包含封装和解析报文表头。对于首节点的镜像报文来说,需要由 INT 交换芯片对其添加 INT 头,生成 INT 报文;对于尾节点来说,INT 交换芯片将 INT 报文 中监测信息的封装格式做一致性检查,然后对 INT 报文封装外层表头回传给控制器。

3.3 软件支持 INT

INT 不需要芯片支持也可以实现。当芯片不具有看懂 INT header 的能力,不能够通过解析 其内容来判断要添加什么网络状态到封包中的时候,可以通过 DSCP based INT,在匹配封 包时,不需寻找 INT header,只需保留特定的 DSCP 作为 INT 的识别符号,这样不须芯片 支持也可实现软件 INT。

3.4 角色

3.4.1 Initiator

遥测系统的第一跳。芯片支持 INT 中这个角色要负责插入 INT header,供 Transit 判断是 否要插入 MD,将报文发送给中间节点。软件支持 INT 的框架中,使用的是控制器发出的特 定 DSCP 的探测封包,不是业务封包,所以 Initiator 的任务和 Transit 节点相同,都是配置 一个 ACL 去拦截特定 DSCP 的封包后插入 MD。

3.4.2 Transit

遥测系统的中间传递者。芯片支持 INT 中这个角色要判读 INT header,并解析内容再对封 包插入需要的 MD。在软件支持 INT 框架中,只需拦截特定 DSCP 封包后插入 MD,再将报 文发送给下游节点。

3.4.3 Terminator

遥测系统的最后一跳。芯片支持 INT 中这个角色负责提取全部的 MD 信息,根据用户配置 的报文封装参数,对监测信息进行 UDP 头及 IP 头封装,转发到控制器。在软件支持 INT 框 架中,使用的是芯片 ERSPAN 的能力,将符合该条件的封包转发到控制器。

3.5 Metadata

为了满足设备维护和网络状态监控等多样需求,现行 INT 的 MD 信息可以说是越来越多样 化,下面这张图表展示的是通常 INT 可以收集的统计数据,但是要强调的是,收集的资料越 多,代表附加的 MD 会越多,而且每一跳都会增加相对应的 MD,这导致该探测封包有可能 在中途因为达到 MTU 的上限值而被丢弃,所以慎选对分析有帮助的 MD 数据上传才是正确 的做法。在之前软件支持 INT 框架中,针对客户希望分析的问题——网络等待时间分析,我 们挑选了"数据包入端口号""数据包出端口号""数据包入端口时间戳""数据包出端口 时间戳"及"交换机编号"这五项指标做为 MD,通过这五项指标,控制器就已经能清楚分 析出延迟的网络段范围。

分类方式	统计信息	可读/可写
	交换机编号(Switch ID)	Y/N
交换机级	 L2/L3层流表计数(L2 or L3 flow table count)	Y/N
状态信息		Y/N
	时间戳(Timestamp)	Y/N

	接收数据包计数(Received packets)	Y/N
	接收字节计数(Received bytes)	Y/N
	端口号(Port ID)	Y/N
	数据包入端口号(Ingress port ID)	Y/N
	数据包出端口号(Egress port ID)	Y/N
	入队列字节数(Bytes enqueued)	Y/N
		Y/N
	接收字节计数(Bytes received)	Y/N
		Y/N
		Y/N
端口级状	接收数据包计数(Packet received count)	Y/N
态信息		Y/N
		Y/N
	接受错误计数(Receive error count)	Y/N
		Y/N
		Y/N
		Y/N
	接收CRC校验错误(Receive CRC Error count)	Y/N
	数据包入端口时间戳(Ingress timestamp)	Y/N
	数据包出端口时间戳(Egress timestamp)	Y/N
	队列ID(Queue ID)	Y/N
队列级状	入队列字节数(Bytes enqueued)	Y/N
态信息		Y/N
	接收溢出错误计数(Receive overrun error count)	Y/N
	数据包入交换机端口(Packet 's input port)	Y/N
数据包级	数据包出交换机端口(Packet 's output port)	Y/Y
状态信息	数据包计数(Packet number count)	Y/Y
流表级状	数据包查找计数(Packet lookup count)	Y/N
态信息	数据包匹配计数(Packet match count)	Y/N
流级状态		Y/N
信息		

3.6 Postcard 模式

除了一般模式以外,INT还有Postcard模式,不再是基于Path进行监控,而是各个节点单 独发送INT metadata给采集器,每个INT节点都具备网络事件检测能力,业务数据包在网 络的传输过程中不会被插入Metadata。

图 3-2 Postcard 模式

- 芯片支持 INT,使用芯片能力来处理或封装 INT 报文表头。
- 软件支持 INT,使用 DSCP 作为判断是否为 INT 封包的依据,而非 INT header。

5 典型应用指南

5.1 典型组网方案

下图是数据中心常用的典型拓扑。

- 机柜中的 server 会连接到机柜内的 leaf 交换机,两台 leaf 交换机互为备援和负载平衡。
- 每个机柜中的 leaf 交换机上行口会汇聚到 spine 层的交换机,提供更高的带宽。
- 最后这些 spine 层的交换机会通过 core 层交换机离开数据中心网络系统, core 层交换机通常做为数据中心的网关节点。
- 在 INT 配置中, leaf 和 core 层级的交换机作为遥测网络的边界,通常会同时具备
 Initiator 和 Terminator 的身份, spine 层级的交换机则通常配置为 Transit。
- 图 5-1 典型拓扑

5.2 具体配置

1. 配置 Initiator

1.1. 配置 device id,用来表示回传交换机的标识符 Switch1# configure terminal sonic(config)# tam dev-id set 100

1.2. 配置一个 INT 的实体,设定角色为 initiator sonic(config)# tam int int1 sonic(config-tam-int-int1)# role initiator sonic(config-tam-int-int1)# exit

1.3. 配置一个 ACL table 和 rule 并设定 dscp=5 作为 INT 封包的识别符号

sonic(config)# access-list mirror-dscp t1 in sonic(config-acl-mirror-dscp-t1)# access-rule r1 tam-action int1 dscp 5 63 sonic(config-acl-mirror-dscp-t1)# bind ethernet 45 sonic(config-acl-mirror-dscp-t1)# commit

- 2. 配置 Transit
- 2.1. 配置 device id,用来表示回传交换机的标识符

Switch1# configure terminal

sonic(config)# tam dev-id set 200

2.2. 配置一个 INT 的实体,设定角色为 Transit

sonic(config)# tam int int1

sonic(config-tam-int-int1)# role transit

sonic(config-tam-int-int1)# exit

2.3. 配置一个 ACL table 和 rule 并设定 dscp=5 作为 INT 封包的识别符号

sonic(config)# access-list mirror-dscp t1 in

sonic(config-acl-mirror-dscp-t1)# access-rule r1 tam-action int1 dscp 5 63

sonic(config-acl-mirror-dscp-t1)# bind ethernet 45

sonic(config-acl-mirror-dscp-t1)# commit

- 3. 配置 Terminator
- 3.1. 配置 device id,用来表示回传交换机的标识符

Switch1# configure terminal

sonic(config)# tam dev-id set 300

3.2. 配置一个 collector 的实体,指定控制器的 ip 和本地端口的 ip

sonic(config)# tam collector collector1

sonic(config-tam-collector-collector1)# dst-ip 11.1.3.3

sonic(config-tam-collector-collector1)# src-ip 3.3.3.3

sonic(config-tam-collector-collector1)# mode none

sonic(config-tam-collector-collector1)# exit

3.3. 配置一个 erspan 的 session,注意 destination ip 要和控制器 ip 一致,source ip 要和本地端口 ip 一致,dscp 为 1,ttl 为 254

sonic(config)# monitor erspan mirror1 destination 11.1.3.3 source 3.3.3.3 dscp 1 ttl 254

3.4. 配置一个 INT 的实体,设定角色为 Terminator,绑定 collector 和 erspan session

sonic(config)# tam int int1

sonic(config-tam-int-int1)# role terminator

sonic(config-tam-int-int1)# collector collector1

sonic(config-tam-int-int1)# bind erspan mirror1

sonic(config-tam-int-int1)# exit

3.5. 配置一个 ACL table 和 rule 并设定 dscp=5 作为 INT 封包的识别符号

sonic(config)# access-list mirror-dscp t1 in

sonic(config-acl-mirror-dscp-t1)# access-rule r1 tam-action int1 dscp 5 63

sonic(config-acl-mirror-dscp-t1)# bind ethernet 45

sonic(config-acl-mirror-dscp-t1)# commit

6 维护

下面主要介绍如何监控 INT 模块运行状态及进行相关的故障排查。

1. 查看 INT 相关配置						
在 Switch 上查看:						
sonic (config) # do show	w tam					
Device ID:100						
Collector:						
Collector SRC IP (only for INT) I	DST IP DST PO	ORT (only f	for MOD) MODE		
Collector1 3.3.3.3	I	11.1.3.3		NONE		
INT:						
INT Role C	Collector					
int2						
int1 IERMINATOR	collector1					
MOD:			<i>.</i>			
State Collector	Refresh Time(r	nin) Leave Tim	e(min)			
		1	10			
sonic(config)#		'	10			
Chaustan 北公司以本法		大刀声历				
SHOW LAIM 指文可以宣讯	/INI ��自,他国	፤ Г∕ 归 争坝				
● INT role 配置是否正确						
● 检查 collector IP 配置是否正确						
● 检查 INT 和 collector 的绑定是否正确						
2. 查看 ACL 相关配置						
在 Switch 上查看:						
sonic # show access-lis	t					
Table Type	Status	Binding	Stage	Rule		

t1	MIRROR_E	DSCP	Up	Ethe	ernet45	ingress	r1
t1(TEMP)	MIRROR_	DSCP	Down	Ethe	ernet45	ingress	r1
sonic # show ac							
access-list access-rule							
sonic # show access-rule							
Rule	Table	Status	Prior	ity	Action		Match
r1	t1	Up		10	TAM_ACTIC	N: int1	DSCP: 5/63
r1	t1(TEMP)	Down		10	TAM_ACTIC	N: int1	DSCP: 5/63
sonic #							

Show access-list 和 show access-rule 指令可以查询 ACL 的配置,检查下列事项

- ACL stage 必须是 ingress,INT 才能正常运作
- Status 必须为 up,若不是应检查是否有绑上端口
- Action 必须是 TAM_ACTION 并绑上正确的 INT 实体

3. 查看 ERSPAN 配置

sonic (config) # do show monitor session

ERSPAN Sessions

Name Status SRC IP DST IP GRE DSCP TTL Policer Monitor Port SRC Port Direction

mirror1 active 3.3.3.3 11.1.3.3 1 254

sonic (config) #

在 Switch 上查看:

Show monitor session 可以用来查询 ERSPAN 的状态,检查下列事项

- Status 必须是 active,若不是可尝试由控制器 ping Switch 来检查两者之间的联机
- DST IP 是否为控制器的 IP
- SRC IP 是否为交换机上的端口 IP